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Abstract  

In present  theories a particle is c o m m o n l y  associated with a singularity of  the  field. A 
more  realistic picture would describe the  particle by an intense bu t  singularity-free 
field. We have found  a new solution to the  aesthetic field equat ions for which the field 
associated with the  particle has a very large magni tude.  The particle appears to be 
bounded  despite the  large numbers  appearing in the solution. We prove that  this present  
solution is no t  equivalent to the  O(3)-invariant solution discussed in Muraskin (1973b). 
Since our present  solut ion appears well-behaved, the  suggestion is that  we do no t  con- 
fine ourselves to O(3)-invariant data in future  work. Owing to the large magni tude  fields, 
we were unable  to s tudy trajectories o f  the  particle in any  detail. There is no th ing  
wrong, in itself, with large numbers .  The present  solution,  which we have now studied, 
is the first instance in our work on aesthetic field theory in which large numbers  appear 
wi thout  the  suggestion of  unboundedness .  

1. Introduction 

There are some mathematical principles that are of  such an attractive 
nature that they would be expected to be incorporated in physics at a 
fundamental level. We have been studying several principles which we may 
reasonably believe to fit in this category 

The Dirac equation is an equation that treats all first derivatives in a 
uniform way. This can be considered an "aesthetic" principle. The question 
to which we have addressed ourselves is whether or not it is possible to 
formulate a theory where all derivatives as well as all tensors are treated in a 
uniform way. We have shown, in previous work (Muraskin, t970, 1975) that 
it is possible to do so. The field theory assumes the existence of  a hierarchy 
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of tensors in a Cartesian space (together with a time axis). We then hypo- 
thesize the existence of a universal change function that determines the 
change of all tensor functions. Since the change function is, itself, a tensor 
function, Aristotelian logic demands that the change function must determine 
its own change as well. This leads to the field equations U]k;1= o. Such a theory 
has, we .have found in previous papers, considerable content. Furthermore, it 
is difficult to believe that solutions with even greater complexity do not exist. 
We shall continue our study of the solutions of these equations in this paper. 

2. Discussion o f  0(3) lnvariance 

There are some reasons to question an underlying structure invariant under 
0(3) from a conceptual point of view. Such invariance was made use of in 
Muraskin (1973a, 1973b). 

(a) I f  l~.y is a function of x as in the case of  e~i -~ ~ .  at infinity, then 
1-~, is really not a basic object in the theory. We recall 

I~k = eeie5 e~'k r ~  (2.1) 

Thus, if eC~ i ~ ~ at infinity, then ~ k  cannot go to zero there, unless F~, is a 
function of x Since F{,. is not invariant under 0(3), even in Muraskin (1973b), 
one can question why l~, (x)  should be. In Aqk theory (Muraskin, 1973a) 
A~.y was constant, and thus it is a basic object in the theory. In this case, the 
group invariance is a more natural hypothesis. 

(b) Invariance of F~, under 0(3) may be too strong a restriction. That is, 
the data we shall present, in Section 3, appear to lead to a bounded particle. 
I f  we rotate the coordinate system, we have 

p/k=, i asia m] ankI~rn n (2.2) 

In this paper, we shall study, in particular, the component Fla. Using the 
ti rl  F ik, we get a similar looking bounded particle for F 11. This suggests that the 

requirement of  0(3) invariance of 1-~ 7 does not appear to be necessary in 
order to have a system that does not have its structure altered by rotations. 
These arguments suggest that we study the non-O(3)-invariant situation. 

3. A New Set o f  Data 

We consider the following F ~ :  

r l t  = o.1 r12  = o r13 = o r l o  = o.1 

Pt 1 = 0. I F192 = 0 1"193 = 0 1"19o = 0 

r l l  -- o.1 r~2  = o r13 = o r i o  -- o 

r h  = o.1 r ~  = o r13 = o r~o = o 

r f i  -- o r ~  -- o.1 r ~  = o r~o = o 
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r2 i  = 0 P222 = 0.1 r2  3 = 0 V2o = 0.1 

r ~ l  : o r ~  = o.1 r2~ = 0 r ~ o  = o 

ra01 = 0 Pg2 = 0.1 I~g3 : 0 p20 = 0 

p131 = 0 I '?z  = 0 P3 3 = 0.1 r~o  = 0 

P~I = 0 Pazz = 0 I'~3 = 0.1 r3o  : 0 

p31 = 0 P~2 = 0 V~3 = 0.1 P~o = 0.1 

p~o~ = o r~2  = o r ~  : o.1 p~o = o 

F°I = - 0 . 1  Pl°2 = - 0 . 1  V°3 = - 0 . t  r ° o  = o 

v°~ = - 0 . 1  P°z = - 0 . 1  lP° 3 = - 0 . 1  r2°o = 0 

P°31 = - 0 . 1  17302 = - 0 . 1  P° 3 = - 0 . 1  P3°o = 0 

V°o, = o p°2 = o r %  = 0 r ° o  = O l  

We take for eC~i, the following 

e* x = 0.88 el2 = - 0 . 4 2  e13 = - 0 . 3 2  elo = 0.22 

e21 = 0.5 e22 = 0.9 e23 = - 0 , 4 2 5  e2o = 0.3 

e31 = 0.2 e32 = - 0 . 5 5  e33 = 0.89 e3o = 0.6 

e°l  = 0.44 e°2 = - 0 . 1 6  e°3 = 0.39 e°o = 1.01 
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(3.1) 

(3.2) 

An interesting observation is that  these data satisfy the integrability equations 
with R/ikt 4= 0 but  does not  satisfy the gi/integrabitity equations, at least for 
a diagonal gii. The gi] integrabitity equat ion has 

gthgtimk + gitRthmk = 0 (3,3) 

Using 

F~k = ec~ieSe ~'kp~.y 

gij = eeeie~jga3 (3.4) 

with an arbitrary ee~ i (possessing an inverse, at least at the origin) we get 

gxceRX3,y~ + g~xRXa.y8 = 0 (3.5) 

For  a = 1, 13 = 1, 7 = 2, 8 = t we get for a diagonal gc~ 

g n  R1121 = 0 (3.6) 

But R 1 ~21 is not  zero for the P ~  we have introduced.  Thus, the integrability 
equations for gi] cannot  be satisfied for diagonal ge~. There exists, however,  
nondiagonal  symmetr ic  second-rank tensors for which the go integrability 
equations can be satisfied. For  example, we may  take gi] = I'~iI~s]. Here, gii 
is const ructed  f rom products  o f  Ulk. 
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This situation serves to introduce another variant within aesthetic field 
theory that we have not needed before this. In our earlier papers, we have 
assigned I ~  v and ge~ in an arbitrary fashion at the origin point. But, so far 
as.the fieldequations are concerned, gij is a secondary type field. That is, 
PJk determines the change of gij but gij does not effect the change of F/k. 
Thus, a simplifying hypothesis would be to consider only Pjk as arbitrary at 
the origin point. 

Let us return to studying the properties of  the new set o f  data. We see 
that it contains the same components that appear in the O(3)-invariant data, 
namely, 1 

r l o  = = = r ol--rg2--r% = roo° _- - r i , °  = _ r %  = _ r o 3  (3.7) 

But, in addition, we have components not present in the 0(3)  case. 
The present data cannot be written in the form 

= 6fl~bv + 6vO~ + ~eg#v +g@BXexp~v (3.8) (00 ) 
1 0 

g ~ =  0 1 
0 0 

The 0(3)  data do have such a structure. In the 0(3)  case, P~k is parallel to 
P~t as well, and this result is maintained by the field equations, in the present 
data, P~k is not parallel to I ' t r  

We note, it is not possible to obtain the present data from O(3)-invariant 
data by means of an e~i transformation (such that the inverse eu i exists). We 
see tiffs very simply as follows: given P ~  P ~  we get from 

i,~v = eai %/evk Pjki (3.9) 

- - -  o (3. lO) 

~t  It then follows on multiplication by e~rn that I t k  ---- I ~ t  • Thus, by means of  
an e~ i transformation, we cannot get  Pttk @ P£t starting with O(3)-invariant 
data. This means that the present data are not equivalent to our O(3)-invariant 
data. In Muraskin (1974), we had another set of  data, that was not quite the 
same as our O(3)-invadant data, which led to a bounded particle. But in this 
case, we cannot use the argument given above since ptt~c was the same as F~t 
there. 2 We have not, as yet, proved whether these data are equivalent to 
0(3)  data. 

' The B°terms ['~3, P~2, £23, £~,, 3 3 F21, P12 are not present in (3.1). However, we 
showed, in Muraskin (1974), that these components are not necessary in obtaining 
a bounded particle. 

t = rt tappears also in Muraskin (1975). 2 r t  k 
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We conclude then, that data (3.1) are not equivalent to our O(3)-invariant 
data owing to important differences in structure. 3 

In the next section we discuss the results of  our computer studies for the 
new data. 

4. Computer Results 

Although we have not imposed the condition that any of the components 
be a maximum or minimum at the origin, nevertheless, we have found both a 
planar maximum and minimum close to the origin. In this respect, our results 
are similar to data 3 of Muraskin (1974). The latter'data are of the 0(3)- 
invariant type. 

The contour lines surrounding the maximum and minimum for FII in the 
x-y  plane have a shape resembling a series of ellipses with minor axis much 
smaller than the major axis. Again, the results are much the same as in the 
0(3) work (Muraskin, 1973b). 4 We did most of  our mapping close to the 
planar maximum and minimum in the x-y  plane. We do not expect the x-y  
or y - z  planes to be fundamentally very different owing to the symmetric 
way that the indices 1, 2, 3 appear in P~.  

The big difference with our previous work, that we have uncovered, has 
to do with the magnitude of the field components. We ran a comparison 
run by taking the O(3)-invariant data in Muraskin (1973b), but with para- 
meters at the origin taken to be the same as (3.1) and (3.2). The only differ- 
ence then in the two sets of data, is the non-O(3)-invariant components. 

a "s 1 1 2 2 3 3 0 0 Th t a ,  except for the presence of lP21, F31 , 1-'t2 , I~32, Ial3, P23, F21, 1~13, 
0 0 0 0 1 2 2 1 3 3 

F21, F23 , 1-'32 , F31 and the absence of F23, Pl3, ]7'31, 1-'32, I'12, I'21 the data 
would be the same. 

For the O(3)-invariant data we obtained a maximum for Pl, in the x -y  
plane with the value 0.27. On the other hand, for the noninvariant data the 
maximum was in excess of 0. t7 x 107 in the x-y plane. We might add that 
the components of  P]~ were very large at this point. We did not make a 
serious attempt at getting the exact value of the maximum since this would 
have required too much computer time. Also, no attempt was made to find 
the maximum in three-dimensional space. We coutd expect this maximum to 
be much greater than the 0.17 x 107 figure. Thus, we have obtained an 
interesting property of the new particle system, which was not observed in 
our previous work. The maximum has an extremely large magnitude, s 

Can we be sure that a singularity" is not developing? We cannot offer any 
proof one way or the other. However, we have surrounded the maximum in 
the x -y  plane. This suggests that we should be able to surround the maximum 

3 Under a rotation of  coordinates, 17/33, is altered, but any components that were zero to 
start with do not  become nonzero under the rotation. 

4 In Muraskin (1973b), we studied the behavior ofgoo.  
s It has not  been proved that this new effect cannot be obtained for O(3)-invariant 

data for some choice of  data at the origin. However, the comparison run discussed 
above seems to suggest a role for the noninvariant components.  
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in a three-dimensional plot, as x, y, z are all equivalent in F~,. We have been 
able to cross the particle on the line y = -71.17,  which is quite close to 
where we think the maximum in the x -y  plane is located. We did obtain a 
turnabout point when we did this. The values o f  l"ll as we approach the 
planar maximum are given betow 6: 

y x Pll  

- 6 8  - 10.0 0.34 
- 6 8  - 9 . 0  0.43 
- 6 8  - 8 . 0  0.57 
- 6 8  - 7 . 0  0.82 
- 6 8  -6 .0  1.3 
- 6 8  -5 .0  2.6 
- 7 0  - 4 . 0  11.7 
-71  -4 .0  14.2 
-71  -3 .3  369 
-71.17 -3 .209 0.3 X 10 4 

--71.17 -3 .152 0.17 x 107 
-71.17 -3 .132 0.2 x 105 
-71.17 -3 .072 0.15 x 104 
-71.17 -2 .84  96 
-71  -2 .0  6.6 
- 7 1  - 1 . 0  1.7 
- 71  0 0.67 

We note the extremely sharp rise for Pll close to the maximum. 
Is such a large-magnitude maximum a good or bad thing? We would say 

that the present particle is somewhat more realistic than our previous results. 
That is, the particles in nature obey Coulomb's law and Newton's gravitational 
law. Here, the field goes to infinity at the location of the particle. Although 
this infinity would be expected to be modified by other factors, we would 
nevertheless expect the field to be quite large at the location of the particle. 

The minimum in the x -y  plane was found to be roughly at x = - t2 .38 ,  
y = -221.12.  Here, FII = -0.0989. We tried to find the minimum in three 
dimensions. However, large distances from the origin are involved, and again 
we ran into practical limitations involving computer time. We hunted for 
the minimum point as far as x = - 1 1 , y  = -1107,  z = -400.  

We made long runs down the coordinate axis. As in our previous work 
(Muraskin, 1973), the field components got small if we go far enough from 
the origin. This is consistent with the notion of natural boundary conditions. 
However, due to the large distance involved in looking for the minimum 
and large magnitudes involved in looking for the maximum, we have not 
been able to be as extensive as in our previous computer work. As a con- 

6 These values have been obtained by approaching the planar maximum in two 
directions. The grid used was also rather coarse. 
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sequence of this, our conclusions are inferred from planar maps at z = 0 
and from runs down the coordinate axes (including the time axis). 

To summarize, we have obtained the following features in the present 
work: (1) We have found a two-particle system similar to previous two- 
particle systems, with an important difference: The magnitude of the maxima 
is now many orders of magnitude larger than previously. (2) We can prove 
that the present data are not equivalent to our previous O(3)-invariant data. 

5. Discussion 

We recount, here, some features of the present version of the theory: 
(1) The change function is the basic field. (2) Other fields can be constructed 
from the change function by contraction, forming tensor products, and 
differentiation. All such fields have their changes treated by a uniform pro- 
cedure. Thus, all higher derivatives and all tensor fields are treated in a 
uniform way by the theory. (3) The change function is determined by this 
same prescription. This leads to the field equations. 

6. Outlook 

After studying symmetry solutions of the integrability equations 
(Muraskin 1973a, 1973b, 1974) we made the following statement (Muraskin 
and Ring, 1972): "The basic problem, we feel, is to find general solutions of 
the integrability equations. Unfortunately, this is rather complicated." It 
should be said though, that much has been accomplished since that paper. 
We now have observed the following in our computer studies: (1) particle- 
like solutions, some involving collisions of two particles; (2) no sign of 
singularities appearing; (3) fields approaching zero outside the particle- 
thus, a damping mechanism appears to be at work; (4) an indefinite number 
of turnabout points can be made to appear along an axis (Muraskin 1974) 
(although, in this case, we have not been able to satisfy integrability); (5) 
solutions having the property of unboundedness. We would say that these 
ingredients are the kind one needs to build an interesting universe. What we 
need is a set of data that blends in the various characteristics above (the 
damping effect should dominate the unbounded tendency). 

We have already embarked on such a program. By assuming that I'~. r 
has the values 0.1, -0 .1 ,  or 0, we have already obtained some 200 solutions 
of the integrability equations. A set of O(3)-invariant data has been obtained 
by this procedure. The data used in this paper have also been obtained using 
this method. The project of permuting the values -+0.1 and 0 for P ~  is a 
lengthy program 7 for which we have completed only certain limited phases. 
Dr. Elizabeth Cuthill of the Naval Ship Research Laboratory in Washington 
D.C., using IAM (FORMAC or REDUCE can also be used) has been able to 

7 We have been studying, in particular, the case for which the r~q~ components are 
unchanged under 1, 2, 3 cyclic permutation. 
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solve the algebraic integrability equations appearing in Muraskin ( i  9 7 l )  and 
has verified the answers appearing there. The algebraic approach using the 
computer  is still a very formidable problem considering tile complexi ty  of  
the integrability equations. However, we feel an a t tempt  should be made in 
this direction. 
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